publicHandler(Callback callback, boolean async){ if (FIND_POTENTIAL_LEAKS) { final Class<? extends Handler> klass = getClass(); if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) && (klass.getModifiers() & Modifier.STATIC) == 0) { Log.w(TAG, "The following Handler class should be static or leaks might occur: " + klass.getCanonicalName()); } }
mLooper = Looper.myLooper(); if (mLooper == null) { thrownew RuntimeException( "Can't create handler inside thread that has not called Looper.prepare()"); } mQueue = mLooper.mQueue; mCallback = callback; mAsynchronous = async; }
/** * Return the Looper object associated with the current thread. Returns * null if the calling thread is not associated with a Looper. */ publicstatic@NullableLooper myLooper(){ return sThreadLocal.get(); } privatestaticvoidprepare(boolean quitAllowed){ if (sThreadLocal.get() != null) { thrownew RuntimeException("Only one Looper may be created per thread"); } sThreadLocal.set(new Looper(quitAllowed)); }
/** * Initialize the current thread as a looper, marking it as an * application's main looper. The main looper for your application * is created by the Android environment, so you should never need * to call this function yourself. See also: {@link #prepare()} */ publicstaticvoidprepareMainLooper(){ prepare(false); synchronized (Looper.class) { if (sMainLooper != null) { thrownew IllegalStateException("The main Looper has already been prepared."); } sMainLooper = myLooper(); } }
/** * Enqueue a message into the message queue after all pending messages * before the absolute time (in milliseconds) <var>uptimeMillis</var>. * <b>The time-base is {@link android.os.SystemClock#uptimeMillis}.</b> * Time spent in deep sleep will add an additional delay to execution. * You will receive it in {@link #handleMessage}, in the thread attached * to this handler. * * @param uptimeMillis The absolute time at which the message should be * delivered, using the * {@link android.os.SystemClock#uptimeMillis} time-base. * * @return Returns true if the message was successfully placed in to the * message queue. Returns false on failure, usually because the * looper processing the message queue is exiting. Note that a * result of true does not mean the message will be processed -- if * the looper is quit before the delivery time of the message * occurs then the message will be dropped. */ publicbooleansendMessageAtTime(Message msg, long uptimeMillis){ MessageQueue queue = mQueue; if (queue == null) { RuntimeException e = new RuntimeException( this + " sendMessageAtTime() called with no mQueue"); Log.w("Looper", e.getMessage(), e); returnfalse; } return enqueueMessage(queue, msg, uptimeMillis); }
privatebooleanenqueueMessage(MessageQueue queue, Message msg, long uptimeMillis){ msg.target = this; if (mAsynchronous) { msg.setAsynchronous(true); } return queue.enqueueMessage(msg, uptimeMillis); }
booleanenqueueMessage(Message msg, long when){ if (msg.target == null) { thrownew IllegalArgumentException("Message must have a target."); } if (msg.isInUse()) { thrownew IllegalStateException(msg + " This message is already in use."); } synchronized (this) { if (mQuitting) { IllegalStateException e = new IllegalStateException( msg.target + " sending message to a Handler on a dead thread"); Log.w(TAG, e.getMessage(), e); msg.recycle(); returnfalse; } msg.markInUse(); msg.when = when; Message p = mMessages; boolean needWake; if (p == null || when == 0 || when < p.when) { // New head, wake up the event queue if blocked. msg.next = p; mMessages = msg; needWake = mBlocked; } else { // Inserted within the middle of the queue. Usually we don't have to wake // up the event queue unless there is a barrier at the head of the queue // and the message is the earliest asynchronous message in the queue. needWake = mBlocked && p.target == null && msg.isAsynchronous(); Message prev; for (;;) { prev = p; p = p.next; if (p == null || when < p.when) { break; } if (needWake && p.isAsynchronous()) { needWake = false; } } msg.next = p; // invariant: p == prev.next prev.next = msg; } // We can assume mPtr != 0 because mQuitting is false. if (needWake) { nativeWake(mPtr); } } returntrue; }
/** * Run the message queue in this thread. Be sure to call * {@link #quit()} to end the loop. */ publicstaticvoidloop(){ final Looper me = myLooper(); if (me == null) { thrownew RuntimeException("No Looper; Looper.prepare() wasn't called on this thread."); } final MessageQueue queue = me.mQueue; // Make sure the identity of this thread is that of the local process, // and keep track of what that identity token actually is. Binder.clearCallingIdentity(); finallong ident = Binder.clearCallingIdentity(); for (;;) { Message msg = queue.next(); // might block if (msg == null) { // No message indicates that the message queue is quitting. return; } // This must be in a local variable, in case a UI event sets the logger final Printer logging = me.mLogging; if (logging != null) { logging.println(">>>>> Dispatching to " + msg.target + " " + msg.callback + ": " + msg.what); } finallong traceTag = me.mTraceTag; if (traceTag != 0 && Trace.isTagEnabled(traceTag)) { Trace.traceBegin(traceTag, msg.target.getTraceName(msg)); } try { msg.target.dispatchMessage(msg); } finally { if (traceTag != 0) { Trace.traceEnd(traceTag); } } if (logging != null) { logging.println("<<<<< Finished to " + msg.target + " " + msg.callback); } // Make sure that during the course of dispatching the // identity of the thread wasn't corrupted. finallong newIdent = Binder.clearCallingIdentity(); if (ident != newIdent) { Log.wtf(TAG, "Thread identity changed from 0x" + Long.toHexString(ident) + " to 0x" + Long.toHexString(newIdent) + " while dispatching to " + msg.target.getClass().getName() + " " + msg.callback + " what=" + msg.what); } msg.recycleUnchecked(); } }
privateintpostSyncBarrier(long when){ // Enqueue a new sync barrier token. // We don't need to wake the queue because the purpose of a barrier is to stall it. synchronized (this) { finalint token = mNextBarrierToken++; final Message msg = Message.obtain(); msg.markInUse(); //就是这里!!!初始化Message对象的时候,并没有给target赋值,因此 target==null msg.when = when; msg.arg1 = token;
Message next(){ // Return here if the message loop has already quit and been disposed. // This can happen if the application tries to restart a looper after quit // which is not supported. finallong ptr = mPtr; if (ptr == 0) { returnnull; }
int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { if (nextPollTimeoutMillis != 0) { Binder.flushPendingCommands(); }
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) { // Try to retrieve the next message. Return if found. finallong now = SystemClock.uptimeMillis(); Message prevMsg = null; Message msg = mMessages; //关键!!! //如果target==null,那么它就是屏障,需要循环遍历,一直往后找到第一个异步的消息 if (msg != null && msg.target == null) { // Stalled by a barrier. Find the next asynchronous message in the queue. do { prevMsg = msg; msg = msg.next; } while (msg != null && !msg.isAsynchronous()); } if (msg != null) { //如果有消息需要处理,先判断时间有没有到,如果没到的话设置一下阻塞时间, //场景如常用的postDelay if (now < msg.when) { // Next message is not ready. Set a timeout to wake up when it is ready. nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE); } else { // Got a message. mBlocked = false; //链表操作,获取msg并且删除该节点 if (prevMsg != null) { prevMsg.next = msg.next; } else { mMessages = msg.next; } msg.next = null; if (DEBUG) Log.v(TAG, "Returning message: " + msg); msg.markInUse(); //返回拿到的消息 return msg; } } else { // No more messages. nextPollTimeoutMillis = -1; }
@TestApi publicvoidremoveSyncBarrier(int token){ // Remove a sync barrier token from the queue. // If the queue is no longer stalled by a barrier then wake it. synchronized (this) { Message prev = null; Message p = mMessages; while (p != null && (p.target != null || p.arg1 != token)) { prev = p; p = p.next; } if (p == null) { thrownew IllegalStateException("The specified message queue synchronization " + " barrier token has not been posted or has already been removed."); } finalboolean needWake; if (prev != null) { prev.next = p.next; needWake = false; } else { mMessages = p.next; needWake = mMessages == null || mMessages.target != null; } p.recycleUnchecked();
// If the loop is quitting then it is already awake. // We can assume mPtr != 0 when mQuitting is false. if (needWake && !mQuitting) { nativeWake(mPtr); } } }
publicstaticinterfaceIdleHandler{ /** * Called when the message queue has run out of messages and will now * wait for more. Return true to keep your idle handler active, false * to have it removed. This may be called if there are still messages * pending in the queue, but they are all scheduled to be dispatched * after the current time. */ booleanqueueIdle(); }
Message next(){ //..... //记录IdleHandler数量 int pendingIdleHandlerCount = -1; // -1 only during first iteration int nextPollTimeoutMillis = 0; for (;;) { //......
// If first time idle, then get the number of idlers to run. // Idle handles only run if the queue is empty or if the first message // in the queue (possibly a barrier) is due to be handled in the future. if (pendingIdleHandlerCount < 0 && (mMessages == null || now < mMessages.when)) { pendingIdleHandlerCount = mIdleHandlers.size(); } if (pendingIdleHandlerCount <= 0) { // No idle handlers to run. Loop and wait some more. mBlocked = true; continue; }
if (mPendingIdleHandlers == null) { mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)]; } mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers); }
// Run the idle handlers. // We only ever reach this code block during the first iteration. //循环执行IdleHandler的queueIdle方法 for (int i = 0; i < pendingIdleHandlerCount; i++) { final IdleHandler idler = mPendingIdleHandlers[i]; mPendingIdleHandlers[i] = null; // release the reference to the handler
if (!keep) { synchronized (this) { mIdleHandlers.remove(idler); } } }
// Reset the idle handler count to 0 so we do not run them again. pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered // so go back and look again for a pending message without waiting. nextPollTimeoutMillis = 0; } }
A. Android应用程序的消息处理机制由消息循环、消息发送和消息处理三个部分组成的。 B. Android应用程序的主线程在进入消息循环过程前,会在内部创建一个Linux管道(Pipe),这个管道的作用是使得Android应用程序主线程在消息队列为空时可以进入空闲等待状态,并且使得当应用程序的消息队列有消息需要处理时唤醒应用程序的主线程。 C. Android应用程序的主线程进入空闲等待状态的方式实际上就是在管道的读端等待管道中有新的内容可读,具体来说就是是通过Linux系统的Epoll机制中的epoll_wait函数进行的。 D. 当往Android应用程序的消息队列中加入新的消息时,会同时往管道中的写端写入内容,通过这种方式就可以唤醒正在等待消息到来的应用程序主线程。 E. 当应用程序主线程在进入空闲等待前,会认为当前线程处理空闲状态,于是就会调用那些已经注册了的IdleHandler接口,使得应用程序有机会在空闲的时候处理一些事情。