链表-判断链表是否包含环
判断链表是否包含环属于经典问题了,解决方案也是用快慢指针。
每当慢指针 slow
前进一步,快指针 fast
就前进两步。
如果 fast
最终遇到空指针,说明链表中没有环;如果 fast
最终和 slow
相遇,那肯定是 fast
超过了 slow
一圈,说明链表中含有环。
只需要把寻找链表中点的代码稍加修改就行了。
代码如下:
1 | /** |
当然,这个问题还有进阶版:如果链表中含有环,如何计算这个环的起点?
这里简单提一下解法:
1 | /** |
可以看到,当快慢指针相遇时,让其中任一个指针指向头节点,然后让它俩以相同速度前进,再次相遇时所在的节点位置就是环开始的位置。
为什么要这样呢?这里简单说一下其中的原理。
我们假设快慢指针相遇时,慢指针 slow
走了 k
步,那么快指针 fast
一定走了 2k
步:
fast
一定比 slow
多走了 k
步,这多走的 k
步其实就是 fast
指针在环里转圈圈,所以 k
的值就是环长度的「整数倍」。
假设相遇点距环的起点的距离为 m
,那么结合上图的 slow
指针,环的起点距头结点 head
的距离为 k - m
,也就是说如果从 head
前进 k - m
步就能到达环起点。
巧的是,如果从相遇点继续前进 k - m
步,也恰好到达环起点。因为结合上图的 fast
指针,从相遇点开始走k步可以转回到相遇点,那走 k - m
步肯定就走到环起点了:
所以,只要我们把快慢指针中的任一个重新指向 head
,然后两个指针同速前进,k - m
步后一定会相遇,相遇之处就是环的起点了。