回溯算法解题套路示例
回溯算法和我们常说的 DFS 算法非常类似,本质上就是一种暴力穷举算法。回溯算法和 DFS 算法的细微差别是:回溯算法是在遍历「树枝」,DFS 算法是在遍历「节点」。
直接上回溯算法框架,解决一个回溯问题,实际上就是一个决策树的遍历过程,站在回溯树的一个节点上,你只需要思考 3 个问题:
1、路径:也就是已经做出的选择。
2、选择列表:也就是你当前可以做的选择。
3、结束条件:也就是到达决策树底层,无法再做选择的条件。
回溯算法伪代码套路:
1 | result = [] |
其核心就是 for 循环里面的递归,在递归调用之前「做选择」,在递归调用之后「撤销选择」。
下面通过全排列问题和N皇后问题展开进行理解。
全排列问题
题面描述
给定一个不含重复数字的数组 nums
,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。
示例 1:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
示例 2:
输入:nums = [0,1]
输出:[[0,1],[1,0]]
示例 3:
输入:nums = [1]
输出:[[1]]
提示:
1 <= nums.length <= 6
-10 <= nums[i] <= 10
nums 中的所有整数 互不相同
题目分析
我们在高中的时候就做过排列组合的数学题,我们也知道 n
个不重复的数,全排列共有 n!
个。那么我们当时是怎么穷举全排列的呢?
比方说给三个数 [1,2,3]
,你肯定不会无规律地乱穷举,一般是这样:
先固定第一位为 1,然后第二位可以是 2,那么第三位只能是 3;然后可以把第二位变成 3,第三位就只能是 2 了;然后就只能变化第一位,变成 2,然后再穷举后两位……
其实这就是回溯算法,如下这棵回溯树:
只要从根遍历这棵树,记录路径上的数字,其实就是所有的全排列。我们不妨把这棵树称为回溯算法的「决策树」。
为啥说这是决策树呢,因为你在每个节点上其实都在做决策。
比如现在到了第二层的节点2,你现在就在做决策,可以选择 1 那条树枝,也可以选择 3 那条树枝。为啥只能在 1 和 3 之中选择呢?因为 2 这个树枝在你身后,这个选择你之前做过了,而全排列是不允许重复使用数字的。
现在可以解答开头的几个名词:[2]
就是「路径」,记录你已经做过的选择;[1,3]
就是「选择列表」,表示你当前可以做出的选择;「结束条件」就是遍历到树的底层叶子节点,这里也就是选择列表为空的时候。
如果明白了这几个名词,可以把「路径」和「选择」列表作为决策树上每个节点的属性,比如下图列出了几个蓝色节点的属性:
我们定义的 backtrack
函数其实就像一个指针,在这棵树上游走,同时要正确维护每个节点的属性,每当走到树的底层叶子节点,其「路径」就是一个全排列。
再进一步,如何遍历一棵树?
1 | void traverse(TreeNode root) { |
我们只要在递归之前做出选择,在递归之后撤销刚才的选择,就能正确得到每个节点的选择列表和路径。
下面,直接看全排列代码:
1 | private List<List<Integer>> res = new LinkedList<>(); |
N皇后问题
题面描述
按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。
给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。
每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。
示例 1:
输入:n = 4
输出:[[“.Q..”,”…Q”,”Q…”,”..Q.”],[“..Q.”,”Q…”,”…Q”,”.Q..”]]
解释:如上图所示,4 皇后问题存在两个不同的解法。
示例 2:
输入:n = 1
输出:[[“Q”]]
提示:
1 <= n <= 9
题目分析
这个问题本质上跟全排列问题差不多,决策树的每一层表示棋盘上的每一行;每个节点可以做出的选择是,在该行的任意一列放置一个皇后。
直接先上代码
1 | private List<List<String>> resQueens; |
函数 backtrack
依然像个在决策树上游走的指针,通过 row
和 col
就可以表示函数遍历到的位置,通过 isValid
函数可以将不符合条件的情况剪枝:
N
行棋盘中,第一行有 N
个位置可能可以放皇后,第二行有 N - 1
个位置,第三行有 N - 2
个位置,以此类推,再叠加每次放皇后之前 isValid
函数所需的 O(N) 复杂度,所以总的时间复杂度上界是 O(N! * N),而且没有什么明显的冗余计算可以优化效率。你可以试试 N = 10
的时候,计算就已经很耗时了。
当然,因为有 isValid
函数剪枝,并不会真的在每个位置都尝试放皇后,所以实际的执行效率会高一些。但是这个时间复杂度作为上界是没问题的。