Android图形系统-Choreographer

在Android4.1之后增加了Choreographer机制,用于同Vsync机制配合,统一动画、输入和绘制时机。

从绘制流程开始

ViewRootImpl的requestLayout开启绘制流程:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
@Override
public void requestLayout() {
if (!mHandlingLayoutInLayoutRequest) {
checkThread();//检查是否在当前线程
mLayoutRequested = true;//mLayoutRequested 是否measure和layout布局。
scheduleTraversals();
}
}

void scheduleTraversals() {
if (!mTraversalScheduled) {//同一帧内不会多次调用遍历
mTraversalScheduled = true;
mTraversalBarrier = mHandler.getLooper().getQueue().postSyncBarrier();//拦截同步Message
//Choreographer回调,执行绘制操作
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
}
}

这里主要关注两点:

postSyncBarrier : Handler 的同步屏障。它的作用是可以拦截 Looper 对同步消息的获取和分发,加入同步屏障之后,Looper 只会获取和处理异步消息,如果没有异步消息那么就会进入阻塞状态。也就是说,对View绘制渲染的处理操作可以优先处理(设置为异步消息)。

Choreographer: 编舞者。统一动画、输入和绘制时机。也是这章需要重点分析的内容。

Choreographer启动

1
2
3
4
5
6
public ViewRootImpl(Context context, Display display) {
...
//获取Choreographer实例
mChoreographer = Choreographer.getInstance();
...
}

frameworks\base\core\java\android\view\Choreographer.java

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public static Choreographer getInstance() {
return sThreadInstance.get();
}

private static final ThreadLocal<Choreographer> sThreadInstance =
new ThreadLocal<Choreographer>() {
@Override
protected Choreographer initialValue() {
Looper looper = Looper.myLooper();
if (looper == null) {
throw new IllegalStateException("The current thread must have a looper!");
}
return new Choreographer(looper);
}
};

每一个Looper线程都有自己的Choreographer,其他线程发送的回调只能运行在对应Choreographer所属的Looper线程上

1
2
3
4
5
6
7
8
9
10
11
12
13
private Choreographer(Looper looper) {
mLooper = looper;
mHandler = new FrameHandler(looper);
// 根据是否使用了VSYNC来创建一个FrameDisplayEventReceiver对象
mDisplayEventReceiver = USE_VSYNC ? new FrameDisplayEventReceiver(looper) : null;
mLastFrameTimeNanos = Long.MIN_VALUE;//是指上一次帧绘制时间点
mFrameIntervalNanos = (long)(1000000000 / getRefreshRate());//帧间时长,一般等于16.7ms
// CALLBACK_LAST + 1 = 4,创建一个容量为4的CallbackQueue数组,用来存放4种不同的Callback
mCallbackQueues = new CallbackQueue[CALLBACK_LAST + 1];
for (int i = 0; i <= CALLBACK_LAST; i++) {
mCallbackQueues[i] = new CallbackQueue();
}
}

Choreographer类中有一个Looper和一个FrameHandler变量。变量USE_VSYNC用于表示系统是否是用了Vsync同步机制,该值是通过读取系统属性debug.choreographer.vsync来获取的。如果系统使用了Vsync同步机制,则创建一个FrameDisplayEventReceiver对象用于请求并接收Vsync事件,最后Choreographer创建了一个大小为3的CallbackQueue队列数组,用于保存不同类型的Callback。

这里,不同类型的Callback包括如下4种:

1
2
3
4
public static final int CALLBACK_INPUT = 0; //输入
public static final int CALLBACK_ANIMATION = 1; //动画
public static final int CALLBACK_TRAVERSAL = 2; //视图绘制
public static final int CALLBACK_COMMIT = 3; //提交 ( 这一类型是在API level=23的时候添加的)

img

CallbackQueue是一个容量为4的数组,每一个元素作为头指针,引出对应类型的链表,4种事件就是通过这4个链表来维护的。

而FrameHandler中主要处理三类消息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
private final class FrameHandler extends Handler {
public FrameHandler(Looper looper) {
super(looper);
}

@Override
public void handleMessage(Message msg) {
switch (msg.what) {
case MSG_DO_FRAME:
doFrame(System.nanoTime(), 0);
break;
case MSG_DO_SCHEDULE_VSYNC:
doScheduleVsync(); // 请求VSYNC信号
break;
case MSG_DO_SCHEDULE_CALLBACK:
doScheduleCallback(msg.arg1);
break;
}
}
}

Choreographer执行流程

android_choreographer

Choreographer提供了两类添加回调的方式:postCallback 与 postFrameCallback,当然对应类型也包含delay的方法,算上其实有4个方法。

postCallback对应的:

1
2
3
4
5
6
7
8
9
10
public void postCallbackDelayed(int callbackType,
Runnable action, Object token, long delayMillis) {
if (action == null) {
throw new IllegalArgumentException("action must not be null");
}
if (callbackType < 0 || callbackType > CALLBACK_LAST) {
throw new IllegalArgumentException("callbackType is invalid");
}
postCallbackDelayedInternal(callbackType, action, token, delayMillis);
}

postFrameCallback对应的:

1
2
3
4
5
6
7
public void postFrameCallbackDelayed(FrameCallback callback, long delayMillis) {
if (callback == null) {
throw new IllegalArgumentException("callback must not be null");
}
postCallbackDelayedInternal(CALLBACK_ANIMATION,
callback, FRAME_CALLBACK_TOKEN, delayMillis);
}

相比之下postCallback更灵活一点。两者最终都会调到:postCallbackDelayedInternal

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
private void postCallbackDelayedInternal(int callbackType,
Object action, Object token, long delayMillis) {
synchronized (mLock) {
// 当前时间
final long now = SystemClock.uptimeMillis();
// 回调执行时间,为当前时间加上延迟的时间
final long dueTime = now + delayMillis;
// obtainCallbackLocked(long dueTime, Object action, Object token)会将传入的3个参数转换为CallbackRecord(具体请看源码,非主要部分,此处略过),然后CallbackQueue根据回调类型将CallbackRecord添加到链表上。
mCallbackQueues[callbackType].addCallbackLocked(dueTime, action, token);
if (dueTime <= now) {
// 如果delayMillis=0的话,dueTime=now,则会马上执行
scheduleFrameLocked(now);
} else {
// 如果dueTime>now,则发送一个what为MSG_DO_SCHEDULE_CALLBACK类型的定时消息,等时间到了再处理,其最终处理也是执行scheduleFrameLocked(long now)方法
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_CALLBACK, action);
msg.arg1 = callbackType;
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, dueTime);
}
}
}

mCallbackQueues先把对应的callback添加到链表上来,然后判断是否有延迟,如果没有则会马上执行scheduleFrameLocked,如果有,则发送一个what为MSG_DO_SCHEDULE_CALLBACK类型的定时消息,等时间到了再处理,其最终处理也是执行scheduleFrameLocked(long now)方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
private void scheduleFrameLocked(long now) {
if (!mFrameScheduled) {
mFrameScheduled = true;
if (USE_VSYNC) {
// 如果使用了VSYNC,由系统值确定
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame on vsync.");
}
if (isRunningOnLooperThreadLocked()) {
// 请求VSYNC信号,最终会调到Native层,Native处理完成后触发FrameDisplayEventReceiver的onVsync回调,回调中最后也会调用doFrame(long frameTimeNanos, int frame)方法
scheduleVsyncLocked();
} else {
// 在UI线程上直接发送一个what=MSG_DO_SCHEDULE_VSYNC的消息,最终也会调到scheduleVsyncLocked()去请求VSYNC信号
Message msg = mHandler.obtainMessage(MSG_DO_SCHEDULE_VSYNC);
msg.setAsynchronous(true);
mHandler.sendMessageAtFrontOfQueue(msg);
}
} else {
// 没有使用VSYNC
final long nextFrameTime = Math.max(
mLastFrameTimeNanos / TimeUtils.NANOS_PER_MS + sFrameDelay, now);
if (DEBUG_FRAMES) {
Log.d(TAG, "Scheduling next frame in " + (nextFrameTime - now) + " ms.");
}
// 直接发送一个what=MSG_DO_FRAME的消息,消息处理时调用doFrame(long frameTimeNanos, int frame)方法
Message msg = mHandler.obtainMessage(MSG_DO_FRAME);
msg.setAsynchronous(true);
mHandler.sendMessageAtTime(msg, nextFrameTime);
}
}
}

这里首先判断USE_VSYNC,如果使用了VSYNC:走scheduleVsyncLocked,即请求VSYNC信号,最终调用doFrame,如果没使用VSYNC,则通过消息执行doFrame。

那么我们先简单了解下请求VSYNC信号的流程:

1
2
3
4
5
6
7
8
9
10
11
private void scheduleVsyncLocked() {
mDisplayEventReceiver.scheduleVsync();
}
public void scheduleVsync() {
if (mReceiverPtr == 0) {
Log.w(TAG, "Attempted to schedule a vertical sync pulse but the display event "
+ "receiver has already been disposed.");
} else {
nativeScheduleVsync(mReceiverPtr);
}
}

mDisplayEventReceiver 对应的是FrameDisplayEventReceiver,它继承自 DisplayEventReceiver , 主要是用来接收同步脉冲信号 VSYNC。scheduleVsync()方法通过底层nativeScheduleVsync()向SurfaceFlinger 服务注册,即在下一次脉冲接收后会调用 DisplayEventReceiver的dispatchVsync()方法。这里类似于订阅者模式,但是每次调用nativeScheduleVsync()方法都有且只有一次dispatchVsync()方法回调。

然后再看看接收VSYNC信号:

img

底层向应用层发送VSYNC信号,java层通过dispatchVsync()接收,最后回调在FrameDisplayEventReceiver的onVsync

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
private final class FrameDisplayEventReceiver extends DisplayEventReceiver implements Runnable {
private boolean mHavePendingVsync;
private long mTimestampNanos;
private int mFrame;
@Override
public void onVsync(long timestampNanos, int builtInDisplayId, int frame) {
//忽略来自第二显示屏的Vsync
if (builtInDisplayId != SurfaceControl.BUILT_IN_DISPLAY_ID_MAIN) {
scheduleVsync();
return;
}
...
mTimestampNanos = timestampNanos;
mFrame = frame;
//该消息的callback为当前对象FrameDisplayEventReceiver
Message msg = Message.obtain(mHandler, this);
msg.setAsynchronous(true);
//此处mHandler为FrameHandler
mHandler.sendMessageAtTime(msg, timestampNanos / TimeUtils.NANOS_PER_MS);
}
@Override
public void run() {
mHavePendingVsync = false;
doFrame(mTimestampNanos, mFrame);
}
}

可见onVsync()过程是通过FrameHandler向主线程Looper发送了一个自带callback的消息 callback为FrameDisplayEventReceiver。 当主线程Looper执行到该消息时,则调用FrameDisplayEventReceiver.run()方法,紧接着便是调用doFrame。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
void doFrame(long frameTimeNanos, int frame) {
final long startNanos;
synchronized (mLock) {
if (!mFrameScheduled) {
return; // mFrameScheduled=false,则直接返回。
}
long intendedFrameTimeNanos = frameTimeNanos; //原本计划的绘帧时间点
startNanos = System.nanoTime();//保存起始时间
//由于Vsync事件处理采用的是异步方式,因此这里计算消息发送与函数调用开始之间所花费的时间
final long jitterNanos = startNanos - frameTimeNanos;
//如果线程处理该消息的时间超过了屏幕刷新周期
if (jitterNanos >= mFrameIntervalNanos) {
//计算函数调用期间所错过的帧数
final long skippedFrames = jitterNanos / mFrameIntervalNanos;
//当掉帧个数超过30,则输出相应log
if (skippedFrames >= SKIPPED_FRAME_WARNING_LIMIT) {
Log.i(TAG, "Skipped " + skippedFrames + " frames! "
+ "The application may be doing too much work on its main thread.");
}
final long lastFrameOffset = jitterNanos % mFrameIntervalNanos;
frameTimeNanos = startNanos - lastFrameOffset; //对齐帧的时间间隔
}
//如果frameTimeNanos小于一个屏幕刷新周期,则重新请求VSync信号
if (frameTimeNanos < mLastFrameTimeNanos) {
scheduleVsyncLocked();
return;
}
mFrameInfo.setVsync(intendedFrameTimeNanos, frameTimeNanos);
mFrameScheduled = false;
mLastFrameTimeNanos = frameTimeNanos;
}
try {
Trace.traceBegin(Trace.TRACE_TAG_VIEW, "Choreographer#doFrame");
//分别回调CALLBACK_INPUT、CALLBACK_ANIMATION、CALLBACK_TRAVERSAL事件
mFrameInfo.markInputHandlingStart();
doCallbacks(Choreographer.CALLBACK_INPUT, frameTimeNanos);
mFrameInfo.markAnimationsStart();
doCallbacks(Choreographer.CALLBACK_ANIMATION, frameTimeNanos);
mFrameInfo.markPerformTraversalsStart();
doCallbacks(Choreographer.CALLBACK_TRAVERSAL, frameTimeNanos);
doCallbacks(Choreographer.CALLBACK_COMMIT, frameTimeNanos);
} finally {
Trace.traceEnd(Trace.TRACE_TAG_VIEW);
}
}

当Vsync事件到来时,顺序执行4种事件对应CallbackQueue队列中注册的回调。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
void doCallbacks(int callbackType, long frameTimeNanos) {
CallbackRecord callbacks;
synchronized (mLock) {
final long now = SystemClock.uptimeMillis();
//从指定类型的CallbackQueue队列中查找执行时间到的CallbackRecord
callbacks = mCallbackQueues[callbackType].extractDueCallbacksLocked(now);
if (callbacks == null) {
return;
}
mCallbacksRunning = true;
}
try {
//由于CallbackQueues是按时间先后顺序排序的,因此遍历执行所有时间到的CallbackRecord
for (CallbackRecord c = callbacks; c != null; c = c.next) {
c.run(frameTimeNanos);
}
} finally {
synchronized (mLock) {
mCallbacksRunning = false;
do {
final CallbackRecord next = callbacks.next;
recycleCallbackLocked(callbacks);
callbacks = next;
} while (callbacks != null);
}
}
}

按时间顺序先后执行CallbackRecord对应的run方法

1
2
3
4
5
6
7
8
9
10
11
12
13
private static final class CallbackRecord {
public CallbackRecord next;
public long dueTime;
public Object action; // Runnable or FrameCallback
public Object token;
public void run(long frameTimeNanos) {
if (token == FRAME_CALLBACK_TOKEN) {
((FrameCallback)action).doFrame(frameTimeNanos);
} else {
((Runnable)action).run();
}
}
}

接开篇讲的

1
2
3
4
5
void scheduleTraversals() {
...
mChoreographer.postCallback(
Choreographer.CALLBACK_TRAVERSAL, mTraversalRunnable, null);
}

mTraversalRunnable对应:

1
2
3
4
5
6
final class TraversalRunnable implements Runnable {
@Override
public void run() {
doTraversal();
}
}

run方法被执行,所以doTraversal()被执行,开启View的绘制流程。

所以整个绘制过程总的流程如下所示:

img

简单总结:

  • Choreographer支持4种类型事件:输入、绘制、动画、提交,并通过postCallback在对应需要同步vsync进行刷新处进行注册,等待回调。
  • Choreographer监听底层Vsync信号,一旦接收到回调信号,则通过doFrame统一对java层4种类型事件进行回调。